| Discipline :-
ELECTRICAL | Semester:-
5 th | Name of the Teaching Faculty:-KRUSHNA CHANDRA BISOYI | |---|---|---| | ENTREPRENEURSHIPand MANAGEMENT & SMART TECHNOLOGY | No of Days/per
Week Class
Allotted :- 04 | Semester From:- <u>01/08/ 2023</u> To:- <u>30/11/2023</u>
No of Weeks:- 15 | | Week | Class Day | Theory | | | 1 st | 1. Entrepreneurship | | 1 st | 2 nd | Concept / Meaning of Entrepreneurship , | | 1 | 3 rd | Need of Entrepreneurship , Characteristics | | | 4 th | Quality and Types of Entrepreneur, Functions, | | | 1 st | Barriers of entrepreneurship Entrepreneur Vs Manager | | 2 nd | 2 nd | Forms of Business Ownership; Sole proprietorship, partnership forms and others | | - | 3 rd | Types of industries, Concept of start-ups | | | 4 th | Entrepreneurial support agencies at National, State, District Level (sources): DIC, NSIC, OSIC, SIDBI, NABARD, Commercial Banks, KVIC etc | | | 1 st | Technology business incubators (TBI) and Science and Technology Entrepreneur Parks | | 3 rd | 2 nd | 2.Market Survey and Opportunity Identification (Business Planning) Business planning | | | 3 rd | SSI, Ancillary Units , Tiny Units , Service sector Units | | | 4 th | Time schedule plan , Agencies to be contacted for project Implementation | | | 1 st | Assessment of Demand and Supply | | | 2 nd | Potential areas of Growth | | 4 th | 3 rd | Identifying Business Oppertunity | | | 4 th | Final product selection | | | 1 st | 3.Project report Preparation Preliminary project report | | 5 th | 2 nd | Detailed project report | | | 3 rd | Techno economic feasibility | | | 4 th | Project viability | | | 1 st | 4.Management Principles Definations of management | | 6 th | 2 nd | Principles of management | | | 3 rd | Functions of management (planning, organizing staffing, directing and controlling etc.) | | | 4 th | Level of Management in an Organisation | | 7 th | 1 st | 5.Functional Areas of management | | - Commonwell | and | a)Production management->Functions , activities , Productivity | | | 2 nd | Quality control , Production planning and control | | | 3 rd | b)Inventory Management | | | 4 th | Need for Inventory management | | | 4 | Model/ Techniques of inventory management | | | 1 st | c)Financial management | | | 1- | Functions of financial management, management of working | | 8 th | | capital, Costing (only concept), Break even analysis | | | 2 nd | Brief idea about accounting Terminologies: Book Keeping ,
Jourrnal entry ,Petty Cash book , P & L Accounts, Balance Sheet
(only concepts) | |------------------|-----------------|--| | | 3 rd | d)Marketing Management Concept of Marketing and Marketing Management Marketing Techniques (only concept) | | | 4 th | Concept of 4P s (price ,place ,product ,promotion) | | | 1 st | e)Human Resource Management Function of Personnel Management, Man power planning, | | 9 th | 2 nd | Recruitment ,Sources of manpower ,Selection of manpower ,
Selection process , Method of Testing , | | | 3 rd | Methods of Training & Development , Payment of Wages | | | 4 th | 6.Leadership and Motivation a)Leadership | | | 1 st | Defination and Need/ Importance | | | 2 nd | Qualities and Functions of a leader | | 10 th | | Manager Vs Leader | | | 3 rd | Style of leadership (Autocratic , Democratic , Participative) | | | 4 th | b)Motivation | | | | Defination and Characteristics, Importance of motivation | | | 1 st | Factors affecting motivation | | 11 th | 2 nd | Theories of motivation (Maslaw) | | | 3 rd | Methods of improving Motivation | | | 4 th | Importance of Communication in Business | | | 1 st | 7.Work Culture , TQM & Safety | | 12 th | | Types and Barriers of Communication | | 12 | 2 nd | Human relationship and Performance in Organization | | | 3 rd | Relation with Peers, Superiors and Subordinates | | No. 1-10 | 4 th | TQM concepts: Quality policy, Quality Management, Quality system | | | 1 st | Accidents and safety , causes and preventive measures | | 4 o th | 2 nd | General safety Rules, Personal Protection Equipment (PPE) | | 13 th | 3 rd | 8.Legislation Intellectual Property Rights (IPR) | | | 4 th | Patents, Trademarks, Copyrights | | | 1 st | Features of factories Act 1948with amendment(only salient point) | | 14 th | 2 nd | | | | 3 rd | Features of Payment of Wages Act 1936(only salient point) 9.Smart Technology | | | 4 th | Concept of IOT ,How IOT works | | | 1 st | Components of IOT | | 15 th | 2 nd | Characteristics of IOT ,Categories of IOT | | | 3 rd | Application of IOT – Smart cities ,Smart transportion | | | 4 th | Smart Home , Smart Healthcare Smart industry | | | 4"" | Smart Agriculture, Smart Energy Manaagementetc | AP 62 Principal Govt. Polytechnic BERHAMPUR (GM.) J6 H.O.D E.E | Discipline :- | Semester:- | Name of the Teaching Faculty: - | |--|--|--| | ELECTRICAL | 5 th | LIPIKA SANDHA | | Subject:- DIGITAL ELECTRONICS& MICROPROCESSOR (TH-3) | No of Days/per
Week Class Allotted
:-
05 | Semester From:- <u>01/08/2023</u> To:- <u>30/11/2023</u> No. Of weeks:15 | | Week | Class Day | Theory | | 1 st | 1 st
2 nd | Introduction to DIGITAL ELECTRONICS NUMBER SYSTEMS AND CODES | | | 3 rd | List different number system & their relevance: binary, octal, decimal, Hexadecimal, Study the Conversion from one number system to another | | | 4 th | Perform Arithmetic operations of binary number systems. | | - 52 | 5 th | 1's & 2's complement of Binary numbers., Perform Subtraction of binary numbers using complementary numbers. Perform multiplication and division of binary numbers. | | 2 nd | 1 st | Define concept of Digital Code & its application. Distinguish between weighted & non-weight Code | | 2 | 2 nd | Study Codes: definition, relevance | | 1 4 400 | 3 rd | Types of code (8-4-2-1, Gray, Excess-3 and importance of parity bit. | | 1116 | 4 th | LOGIC GATES | | 9711 | 5 th | Discuss the Basic Logic & representation using electric signals | | 3 rd | 1 st | Learn the Basic Logic gates (NOT, OR, AND, NOR, NAND, EX-OR & EXNOR) – Symbol, function, expression, truth table & example IC nos. | | | 2 nd | Define Universal Gates with examples & realization of other gates | | 11 = | 3 rd | BOOLEAN ALGEBRA | | | 4 th | Understand Boolean : constants, variables & functions. Comprehend the Laws of Boolean algebra | | 1 = 12 | 5 th | State and prove Demorgan's Theorems. Represent Logic Expression : SOP & POS forms & conversion | | 4 th | 1 st | Simplify the Logic Expression/Functions (Maximum of 4 variables): using Boolean algebra and Karnaugh's map methods | | 4 | 2 nd | What is don't care conditions? Realisation of simplified logic expression using K-Map | | | 3 rd | Realisation of simplified logic expression using gates. Illustrate with examples the above. | | | 4 th | COMBINATIONAL CIRCUITS | | tena je je je je | 5 th | Define a Combinational Circuit and explain with examples. Arithmetic Circuits (Binary) | | | 1 st | Realise function, functional expression, logic circuit, gate level circuit, truth table & applications of Half-adders, | |---|------------------------|--| | 5 th | 2 nd | Full-adder & full-Subtractor. Explain Serial & Parallel address: concept comparison & application | | | 3 rd | Discuss Multiplexers: definition, relevance, gate level circuit of simple. Demultiplexers (1:4) logic circuit with truth Table | | | 4 th | Explain the working of Binary-Decimal Encoder & Decoder. | | in the second second | 5 th | Working of 2-bit Magnitude Comparator: logic expression, truth table | | | 1 st | SEQUENTIAL CIRCUITS | | 6 th | 2 nd | Define Sequential Circuit: Explain with examples. | | | 3 rd | Know the Clock-definition characteristics, types of triggering & waveform | | | 4 th | Define Flip-Flop, Study RS, Clocked RS, D, T, JK, MS-JK flip-flop with logic Circuit and truth tables. | | | 5 th | Concept of Racing and how it can be avoided. | | ** | 1 st | Applications of flip-flops & its conversion. | | 7 th | 2 nd | COUNTERS | | | 3 rd | List the different types of counters-Synchronous and Asynchronous. | | | 4 th | Explain the modulus of a counter | | | 5 th | COUNTERS | | | 1 st | List the different types of counters-Synchronous and Asynchronous. Explain the modulus of a counter | | 8 th | | 4-bit asynchronous counter with timing diagram Asynchronous decade counter | | | 2 nd | | | | 3 rd | 4-bit synchronous counter | | | 4 th | Compare Synchronous and Asynchronous counters and know their ICs no | | | 5 th | REGISTERS | | 7 1 13 | 1 st | Explain the working of various types of shift registers – SISO | | 9 th | 2 nd | SIPO | | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3 rd | PISO | | | 4 th | PIPO, with truth table using flip flop. | | | 5 th | 8085 MICRO PROCESSOR | | | 1 st | Introduction to microprocessor, Micro computers | | | 2 nd | Architecture of intel 8085A Microprocessor | | 10 th | 3 rd | . Functional Block diagram and Description of each block. | | 10 | 4 th | Pin diagram and description. | | | 5 th | Stack, Stack Pointer, Stack Top | | | 1 st | Interrupts, Op-code & Operands | | 11 th | 2 nd | Grouping and Explanation of different group instructions with examples | | | 3 rd | Instruction sets &Addressing modes | | | 4 th | | | | 4" | Instruction fetching and execution, Timing diagram of differ machine cycle. | | - schite - | 5 th | Timing diagram of different machine cycle, 8085A timing states. | |------------------|-----------------|--| | | 1 st | Basic Interfacing Concept, Memory Mapping & I/O Mapping | | 12 th | 2 nd | Programmable peripheral interface Intel -8255, Functional block diagram and Operation of 8255, Programming of 8255 | | | 3 rd | Application Using 8255: Seven Segment LED display | | | 4 th | Square Wave Generator | | | 5 th | Traffic light controller | | | 1 st | | | | 2 nd | | | 13 th | 3 rd | Doubt Clearing Classes and Revision of Syllabus | | | 4 th | | | | 5 th | | | - 4" Turk | 1 st | | | | 2 nd | | | 14 th | 3 rd | Previous Five (05) Years Semester Question Answer Discussion | | | 4 th | | | | 5 th | | Sow 31 23 HOD, EE Principal Govt. Polytechnic BERHAMPUR (GM.) | Discipline:-
Electrical
Engineering | Semester:- 5th | Name of the teaching faculty:-RAJASRI TRIPATHY | |--|---|---| | Subject:-
Utilization Of
Electrical Energy
And Traction | No. of days/ per
week class
allotted:-4 | Semester from:- <u>01/08/2023</u> To:- <u>30/11/2023</u>
No. of weeks:15 | | Week | Class day | Theory | | 1 st | 1st | ELECTROLYTIC PROCESS 1.1 Definition and Basic principle of Electro Deposition. | | 2 nd | 1st | 1.2 Important terms regarding electrolysis | | | 2nd | 1.3 Faradays Laws of Electrolysis.1.4 Definitions of current efficiency, Energy efficiency | | | 3rd | 1.5 Principle of Electro Deposition. | | 3rd | 1st | 1.6 Factors affecting the amount of Electro Deposition | | | 2nd | 1.7 Factors governing the electro deposition. | | 4th | 1st | 1.8 State simple example of extraction of metals. | | | 2nd | 1.9 Application of Electrolysis. | | | 3rd | ELECTRICAL HEATING | | | | 2.1. Advantages of electrical heating. | | | Jages James W | 2.2. Explain mode of heat transfer and Stephen's Law. | | | 4th | 2.3. Discuss principle of Resistance heating. | | | | 2.3.1 Direct Resistance heating. | | | HOLE MADE IN THE | 2.3.2 Indirect Resistance heating. | | 5th | 1st | 2.4. Explain working principle of direct arc furnace and indirect arc furnace. | | | 2nd | 2.5. Principle of Induction heating | | | 3rd | 2.6. Working principle of direct core type, vertical core type and indirect core type Induction furnace. | | 6th | 1st | 2.7. Principle of coreless induction furnace and skin effect. | | | 2nd | 2.8. Principle of dielectric heating and its application | | | 3rd | 2.9. Principle of Microwave heating and its application. | | | 4th | PRINCIPLES OF ARC WELDING 3.1 Explain principle of arc welding. | | 7th | 1st | 3.2 Discuss D. C. & A. C. arc phenomena | | . 44 | 2nd | 3.3 D.C. & A. C. arc welding plants of single and multi-operation type. | | | 3rd | 3.3 D.C. & A. C. are welding plants of single and multi-operation type. | | 8th | 1st | 3.4 Types of arc welding | | otii . | 2nd | 3.4 Types of arc welding | | | 3rd | 3.5 Explain principles of resistance welding. | | | 4th | | | | 4tll | 3.6 Descriptive study of different resistance welding methods. | | Oth | 1st | 4. ILLUMINATION 4. 1 Nature of Radiation and its spectrum. | |--------|---------------------------------------|---| | | | 4. I Matare of Madament and 1 | | | | | | | | | | | | | | | | | | | 2nd | 4.2 Terms used in Illuminations. | | | - 1 = 1- put / 1 | i. Luminous intensity | | | | ii. Lumen | | | | iii. Intensity of illumination | | | at 1 May 1, Anne | iv. MHCP
v. MSCP | | | | vi. MHSCP | | | | vii. Brightness | | | | viii. Solid angle | | | | ix. Luminous efficiency | | | 3rd | 4 . 3 Explain the inverse square law and the cosine law | | | 4th | 4 4 Explain polar curves. | | 1 0th | 1st | 4 . 5 Describe light distribution and control. Explain related definitions like | | Total | | maintenance factor and depreciation factors. | | | 2nd | 4 . 6 Design simple lighting schemes and depreciation factor. | | | 3rd | 4 . 7 Constructional feature and working of Filament lamps, effect of variation | | | | of voltage on working of filament lamps. | | | 4th | 4 . 8 Explain Discharge lamps. | | 1 1 th | 1st | 4 . 9 State Basic idea about excitation in gas discharge lamps. | | | 2nd | 4.10 State constructional factures and operation of: - Fluorescent lamp. (PL and PLL Lamps) | | | 3rd | 4.11 Sodium Vapor lamp | | | | 4.12 High Pressure Mercury vapor lamp | | | 4th | 4.13 Neon sign lamp | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4.14 High Lumen output & low consumption fluorescent lamp | | 12th | 1st | INDUSTRIAL DRIVES 5 . 1 State group and individual drive. | | | | 5 . 1 State group and individual drive. | | | 2nd | 5 . 2 Method of choice of electric drives. | | | 3rd | 5 . 2 Method of choice of electric drives. | | | 4th | 5 . 2 Method of choice of electric drives | | 13th | 1st | 5.3 Explain starting and running characteristics of DC and AC motor. | | | 2nd | 5 . 3 Explain starting and running characteristics of DC and AC motor. | | | 3rd | 5 . 3 Explain starting and running characteristics of DC and AC motor. | | | 4th | 5 . 4 State Application of : | | 14th | 1st | 5.4.1 DC motor | | | | 5.4.2 3- phase induction motor | | | | | | | | | | | 2nd | 5.4.3 3-phase synchronous motors.5.4.4 Single phase induction ,series motor, universal motor &repulsion motor | |---|-----------------|--| | | 3rd | ELECTRIC TRACTION 6. 1. Explain system of traction. | | | 4th | 6. 1. Explain system of traction | | | 1st | 6. 2. System of Track electrification | | | 2nd | 6. 2. System of Track electrification | | | 3rd | 6. 2. System of Track electrification | | | 4th | 6. 3. Running Characteristics of DC and AC traction motor | | | 1st | 6. 3. Running Characteristics of DC and AC traction motor | | | 2 nd | 6. 3. Running Characteristics of DC and AC traction motor | | | 3 rd | 6. 4. Explain control of motor 6.4.1 Tapped field control | | | 4 th | 6. 4. Explain control of 6.4.2 Rheostatic control | | | | 6.4.3 Series parallel control | | 1 | 1st | 6. 4.4 Multi-unit control 6.4.5Metadyne control | | | 2 nd | 6. 5. Explain Braking of the following types.6.5.1 Regenerative Braking | | | 3 rd | 6.5.2 Braking with 1-phase series motor | | | 4 th | 6.5.3 Magnetic Braking6 | H.O.D E.E Principal Govt. Polytechnic BERHAMPUR (GM) | Discipline:-
Electrical
Engineering | Semester:- 5th | Name of the teaching faculty:- Prabhat Rashmi Mallik | |---|---|---| | Subject:- Energy
conversion -II | No. of days/ per
week class
allotted:-4 | Semester from:- <u>01/08/ 2023</u> To:- <u>30/11/2023</u>
No. of weeks:15 | | Week | Class day | Theory | | 1 st | 1st | ALTERNATOR: 1.1. Types of alternator and their constructional features | | 2 nd | 1st | 1.2. Basic working principle of alternator and the relation between speed and frequency. | | | 2nd | 1.3. Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor). 1.4. Explain harmonics, its causes and impact on winding factor. | | | 3rd | 1.5. E.M.F equation of alternator. (Solve numerical problems). | | 3rd | 1st | 1.6. Explain Armature reaction and its effect on emf at different power factor of load. | | | 2nd | 1.7. The vector diagram of loaded alternator. (Solve numerical problems) | | 4th | 1st | 1.8. Testing of alternator (Solve numerical problems) 1.8.1. Open circuit test. 1.8.2. Short circuit test | | | 2nd | 1.9. Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems) | | | 3rd | 1.10. Parallel operation of alternator using synchro-scope and dark & bright lamp method | | | 4th | 1.11. Explain distribution of load by parallel connected alternators. | | 5th | 1st | 2. SYNCHRONOUS MOTOR: 2.1. Constructional feature of Synchronous Motor. 2.2. Principles of operation, concept of load angle | | | 2nd | 2.3. Derive torque, power developed.2.4. Effect of varying load with constant excitation | | | 3rd | 2.5. Effect of varying excitation with constant load | | 6th | 1st | 2.6. Power angle characteristics of cylindrical rotor motor | | | 2nd | 2.7. Explain effect of excitation on Armature current and power factor.2.8. Hunting in Synchronous Motor | | | 3rd | 2.9. Function of Damper Bars in synchronous motor and generator.2.10. Describe method of starting of Synchronous motor. | | | 4th | 2.11. State application of synchronous moto 3. THREE PHASE INDUCTION MOTOR: | | | 100 mg 25 | 3.1. Production of rotating magnetic field. | | 7th | 1st | 3.2. Constructional feature of Squirrel cage and Slip ring induction motors. | | | 2nd | 3.3. Working principles of operation of 3-phase Induction motor3.4. Define slip speed, slip and establish the relation of slip with rotor quantities | | | 3rd | 3.5. Derive expression for torque during starting and running conditions and derive conditions for maximum torque. (solve numerical problems) | | 8th | 1st | 3.6. Torque-slip characteristics. 3.7. Derive relation between full load torque and starting torque etc. (solve numerical problems) | |------|-----|---| | | 2nd | 3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (solve numerical problems) 3.9. Methods of starting and different types of starters used for three phase Induction motor. | | | 3rd | 3.10. Explain speed control by Voltage Control, Rotor resistance control, Pole changing, frequency control methods | | | 4th | 3.11. Plugging as applicable to three phase induction motor. 3.12. Describe different types of motor enclosures. | | 9th | 1st | 3.13. Explain principle of Induction Generator and state its applications. | | | 2nd | 4. SINGLE PHASE INDUCTION MOTOR: 4.1. Explain Ferrari's principle. | | | ** | | | | 3rd | 4.2. Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor. | | | 4th | 4.3. Explain Working principle, Torque speed characteristics, performance characteristics and application of following single phase motors 4.3.1. Split phase motor. 4.3.2. Capacitor Start motor. 4.3.3. Capacitor start, capacitor run motor | | 10th | 1st | 4.3.4. Permanent capacitor type motor. 4.3.5. Shaded pole motor | | | 2nd | 4.4. Explain the method to change the direction of rotation of above motors. | | | 3rd | 5. COMMUTATOR MOTORS: | | | 4th | 5.1. Construction, working principle | | 1th | 1st | running characteristic and application of single phase series motor | | | 2nd | 5.2. Construction, working principle of universal motor | | | 3rd | application of Universal motors | | | 4th | 5.3. Working principle of Repulsion start Motor | | 12th | 1st | Repulsion start Induction run motor | | | 2nd | Repulsion Induction motor | | | 3rd | 6. SPECIAL ELECTRICAL MACHINE: | | | 4th | 6.1. Principle of Stepper motor. | | 13th | 1st | 6.2. Classification of Stepper motor. | | | 2nd | 6.3. Principle of variable reluctant stepper motor. | |------|-----|--| | | 3rd | 6.4. Principle of Permanent magnet stepper motor | | | 4th | Doubt clear | | 14th | 1st | 6.5. Principle of hybrid stepper motor | | | 2nd | 6.6. Applications of Stepper motor. | | | 3rd | 7. THREE PHASE TRANSFORMERS: | | | 4th | 7.1. Explain Grouping of winding, Advantages. | | 15th | 1st | 7.2. Explain parallel operation of the three phase transformers. | | | 2nd | 7.3. Explain tap changer (On/Off load tap changing) | | | 3rd | 7.4. Maintenance Schedule of Power Transformers. | | | 4th | Doubt clear | H.O.D E.E. Principal Govt. Polytechnic BERHAMPUR (GM.) | Discipline-ElectricalEngg. | Semester-5 th | Nameof theteachingfaculty- KRUSHNA CHANDRA BISOYI | |--------------------------------|----------------------------------|---| | Subject-Power electronics &PLC | Noofdays/week
classallotted-4 | Semesterfrom- <u>01/08/2023</u> To:- <u>30/11/2023</u>
Noofweeks-15 | | Week | Classday | Theorytopic | | 1 | 1 st | Construction, Operation, V- | | | and the | Icharacteristics&applicationofpowerdiode,SCR,DIAC,TRIAC,PowerMOSFET,GTO&IGBT. | | | 2"" | TwotransistoranalogyofSCR, GatecharacteristicsofSCR | | | 3 rd | SwitchingcharacteristicofSCRduringturnonandturnoff,TurnonmethodsofSCR | | | 4 th | Numerical related to gate turn on and off of MOSFET, BJT | | 2 | 1 st | DifferentCommutationtechniques (Loadcommutation, voltagecommutation and current commutation) | | | 2 nd | SCRprotection(GateProtection) | | | 3 rd | Voltageprotectionandcurrentprotection | | | 4" | FiringCircuits(Generallayoutdiagramoffiringcircuit) | | 3 | 150 | Rfiringcircuits,R-Cfiringcircuit | | | 2 nd | UJTpulsetriggercircuitandSynchronoustriggering(RampTriggering) | | | 310 | LimitationsofRandRCfiringcircuits | | | 4 th | DesignofSnubberCircuitsandnumericaltofindthevalueofRandC. | | 4 | 1 st | Doubtclearingandrevisionclass | | | 2 nd | ControlledrectifiersTechniques(PhaseAngle,ExtinctionAnglecontrol),Singlequadrantsemi converter,twoquadrantfullconverteranddualConverter | | | 3 rd | Workingofsingle-phasehalfwave controlledconverterwithResistiveandR-Lloads | | | 4 ^{ur} | Problemsolvingandrealisingthe waveforms. | | 5 | 1 st | Understandneedoffreewheelingdiode. | | | 2 ^{na} | WorkingofsinglephasefullycontrolledconverterwithresistiveandR-Lloads. | | | 310 | Workingofthree-phase halfwave controlledconverterwithResistive load | | | 4 th | Workingofthreephasefullycontrolledconverterwithresistiveload. | | 6 | 1 st | Doubtclearingandproblemsolving | | | 1 2 ^{na} | WorkingofsinglephaseACregulator. | |----|-------------------|---| | | 314 | Workingprincipleofstepup&stepdownchopper | | | 4 th | Controlmodes of chopper | | | 1 st | Operationofchopperinallfourquadrants | | | 2 ^{na} | UNDERSTANDTHEINVERTERSANDCYCLO-CONVERTERS, Classify inverters. | | | 3 ^{ra} | Explaintheworking ofseriesinverter | | | 4 ^{ui} | Explaintheworkingofparallelinverter | | | 1 st | Explaintheworkingofsingle-phasebridgeinverter. | | | 2 nd | Explainthebasicprincipleofcycloconverter | | | 3 ^{ra} | Explaintheworkingofsingle-phasestepup&stepdownCyclo-converter | | | 4 th | ApplicationsofCyclo-converter | | | 1 st | Problemsolvingoninverterandchopper | | | 2 ^{na} | UNDERSTANDAPPLICATIONSOFPOWERELECTRONICCIRCUITS, Listapplications of powerelectronic circuits | | | 3 ^{ra} | ListthefactorsaffectingthespeedofDCMotors | | | 4 th | SpeedcontrolforDCShuntmotor usingconverter | | 10 | 1 st | SpeedcontrolforDCShuntmotorusingchopper | | | 2 nd | ListthefactorsaffectingspeedoftheACMotors | | | 3 ^{ru} | SpeedcontrolofInductionMotorbyusingACvoltageregulator | | | 4 th | Speedcontrolofinductionmotorbyusingconvertersandinverters(V/Fcontrol) | | 11 | 1 st | WorkingofUPSwithblockdiagram | | | 2 ^{na} | Batterycharger circuitusingSCR withthehelpof adiagram | | | 3 rd | BasicSwitchedmodepowersupply(SMPS)-explainitsworking & applications | | | 4 ^{ur} | Numericaloncyclo-converter | | 12 | 1 st | PLCANDITSAPPLICATIONS, Introduction of Programmable Logic Controller (PLC) | | | 2 nd | AdvantagesofPLC | | | 3 ^{ra} | DifferentpartsofPLCbydrawingtheBlockdiagramandpurposeofeachpartofPLC. | | | 4 th | ApplicationsofPLC | |----|-----------------|---| | 13 | 1 st | DifferentLadderdiagrams | | | 2 ^{na} | Descriptionofcontactsandcoilsinthefollowingstatesi)Normallyopenii)Normallyclosediii) Energizedoutputiv)latchedOutputv)branching | | | 3 rd | Ladderdiagramsfor i) ANDgateii)OR gateandiii) NOTgate | | | 4 th | LadderdiagramsforcombinationcircuitsusingNAND,NOR,AND,ORandNOT | | 14 | 1 st | Timers-i)TONii)TOFFandiii)Retentivetimer | | | 2 ^{nu} | Counters-CTU,CTD | | | 3 rd | LadderdiagramsusingTimersandcounters | | | 4 ^{ui} | PLCInstructionset | | 15 | 1 st | Ladderdiagramsforfollowing(i)DOLstarterand STAR-DELTA starter (ii) Stair caselighting (iii)TrafficlightControl(iv)TemperatureController | | | 2 nd | Specialcontrolsystems-BasicsDCS&SCADAsystems | | | 3 rd | ComputerControl-Data Acquisition, DirectDigitalControlSystem(Basicsonly) | | | 4 th | DoubtClearance | | | | | Principal Govt. Polytechnic BERHAMPUR (GM.) H.O.D E.E